
Teoria Espectral

1. Spectral Theorem

Here we are interested in extending the spectral theorem from some
bounded linear operators to self-adjoint unbounded linear operators.
We are going to give most of the main details to establish the Spectral
Measure Version of the Spectral Theorem. We will also give some details
of the Multiplication Operator Form of the Spectral Theorem. We follow
the notes by Bernard Helffer [1], the books by Reed and Simon [3, 4]
and class notes.

We will start by recalling the spectral theorem for compact operators.

Theorem 1.1. Let H be a separable Hilbert space and T a compact
self-adjoint operator. Then H admits a Hilbertian basis consisting of
the eigenfunctions of T .

More precisely, we can obtain a decomposition of H in the form

H = ⊕
k∈N

Vk

such that

Tuk = λk uk, if uk ∈ Vk
Thus H has been decomposed into a direct sum of orthogonal sub-

spaces Vk in which the self-adjoint operator T is reduced to multipli-
cation by λk.

We recall that an operator P ∈ B(H) is called an orthogonal pro-
jection if P = P ∗ and P 2 = P .

If Pk denotes the orthogonal projection operator onto Vk, we can
write

I =
∑
k

Pk (the limit is in the strong convergence sense)

and

Tu =
∑
k

λkPku, ∀u ∈ D(T ).

This decomposition is the inspiration to extend the spectral theorem
for self-adjoint unbounded operators as we will see below.
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1.1. Spectral family and resolution of the identity.

Definition 1.2. A family of orthogonal projectors E(λ) (or Eλ), −∞ <
λ < ∞ in a Hilbert space H is called a resolution of the identity
(or spectral family) if it satisfies the following conditions:

(i)

(1.1) E(λ)E(µ) = E(min(λ, µ)),

(ii)

(1.2) E(−∞) = 0, E(+∞) = I

where E(±∞) is defined by

(1.3) E(±∞)x = lim
λ→±∞

E(λ)x for all x ∈ H,

(iii)

(1.4) E(λ+ 0) = E(λ)

where E(λ+ 0) is defined by

(1.5) E(λ+ 0)x = lim
µ>λ

µ→λ

E(µ)x for all x ∈ H.

Remark 1.3. Observe that (1.1) gives the existence of the limit. The
limit in (1.3) is taken in H. We also notice that λ 7→ 〈E(λ)x, x〉 =
‖E(λ)x‖2 is monotonically increasing.

Consider the spectral family E(λ). The following statements are
equivalent.

1.

(1.6) ‖E(λ)ϕ‖ ≤ ‖E(µ)ϕ‖ λ ≤ µ.

2.

(1.7) E(λ) = E(λ)E(µ) = E(µ)E(λ) λ ≤ µ.

Proof. If Eµφ = 0 from (1.6) we deduce that Eλφ = 0.
On the other hand,

Eµ(Eµ − I)ϕ︸ ︷︷ ︸
ψ

= 0, ∀ϕ ∈ H.

Hence
Eλψ = 0 ⇐⇒ Eλ(Eµ − I)ϕ = 0.

Thus
EλEµ = Eλ.
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In other words, if ϕ ∈ KerE(λ), then

Eλϕ = EλEµϕ

Now suppose that ϕ ∈ E(λ)H. First we notice that ϕ = E(λ)ϕ.
Hence

‖ϕ‖ = ‖E(λ)ϕ‖ ≤ ‖E(µ)ϕ‖ = ‖E(µ)E(λ)ϕ‖
≤ ‖E(µ)E(λ)‖‖ϕ‖
≤ ‖E(µ)‖‖E(λ)‖‖ϕ‖
= ‖ϕ‖

where we have used that the norm of a orthogonal projection is 1. Thus

(1.8) ‖ϕ‖ = ‖E(µ)ϕ‖.

The identity (1.8) implies that

‖ϕ‖2 = ‖E(µ)ϕ‖2 + ‖(I − E(µ))ϕ‖2 = ‖E(µ)ϕ‖2.

This implies that

‖(I − E(µ))ϕ‖ = 0

and so E(µ)ϕ = ϕ. Thus

E(µ)E(λ)ϕ = E(λ)ϕ.

�

Remark 1.4. The property (1.6) implies that

s− lim
λ→µ
λ<µ

E(λ) = E(µ− 0)

exists.

Indeed,

‖E(µ)ϕ− E(λ)ϕ‖2 = ‖E(µ)ϕ‖2 + ‖E(λ)ϕ‖2 − 2‖E(λ)ϕ‖2

= ‖E(µ)ϕ‖2 − ‖E(λ)ϕ‖2.

From (1.6) we deduce that

lim ‖E(λ)ϕ‖ = sup
(−∞,µ]

‖E(λ)ϕ‖ = ‖E(µ)ϕ‖

It follows then that

lim
λ→µ
λ<µ

‖(E(µ)− E(λ))ϕ‖ = 0.
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Example 1.5 (Spectral family associated to H0). Let

Gλ(|ξ|2) =

{
0 if λ < 0,

χ
{|ξ|2<λ}

if λ ≥ 0.

Gλ(H0)f = F−1[Gλ(| · |2)Ff ] = (Gλ(|ξ|2)f̂ )∨ = E0(λ)f

• lim
λ→0

E0(λ)f = 0,
(

lim
λ→−∞

E0(λ)f = 0
)
∀f ∈ L2(dξ)

• lim
λ→∞

E0(λ)f = f ∀f ∈ L2(dξ)

• E0(λ) is an orthonormal projection for any λ.

• E0(λ)2 = E0(λ)

• E0(λ) = E∗0(λ)
•

‖E0(λ)f‖2 = (E0(λ)f, E0(λ)f)

= (E2
0(λ)f, f)

= (E0(λ)f, f).

Exercise 1.6. Prove that E(λ) = Mχ(−∞,λ] is a spectral family,

(E(λ)ϕ|ψ) =

∫ λ

−∞
ϕ(x)ψ(x) dx

and
d

dλ
(E(λ)ϕ|ψ) = ϕ(λ)ψ(λ) a.e. λ.

That is, we have a measure µϕ,ψ such that

dµϕ,ψ = ϕ(λ)ψ(λ) dλ,

or
d(E(λ)ϕ|ψ) = ϕ(λ)ψ(λ) dλ.

We observe that∫
R
λ d(E(λ)ϕ|ψ) =

∫
R
λϕ(λ)ψ(λ) dλ

=

∫
R
xϕ(x)ψ(x) dx <∞ whenever xϕ(x) ∈ L2(R)

Hence for
D(M) = {ϕ ∈ L2(R) : xϕ ∈ L2(R)}
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Mϕ = xϕ

we have (
Mϕ|ψ

)
=

∫
λ d(E(λ)ϕ |ψ) dλ.

Proposition 1.7. Let E(λ) be a resolution of identity; then for all
x, y ∈ H, the function

(1.9) λ 7→ 〈E(λ)x, y〉
is a function of bounded variation whose total variation satisfies

(1.10) V (x, y) ≤ ‖x‖ · ‖y‖, ∀x, y ∈ H.

where

(1.11) V (x, y) = sup
λ1,...,λn

n∑
j=2

∣∣〈E(λj−1,λj ]x, y〉
∣∣.

Proof. Let λ1 < λ2 < · · · < λn. From the assumption (1.1) we deduce
that

E(α,β] = Eβ − Eα
is an orthogonal projection. The Cauchy-Schwarz inequality yields

n∑
j=2

|〈E(λj−1,λj ]x, y〉| =
n∑
j=2

|〈E(λj−1,λj ]x,E(λj−1,λj ]y〉|

≤
n∑
j=2

‖E(λj−1,λj ]x‖‖E(λj−1,λj ]y‖

≤
( n∑
j=2

‖E(λj−1,λj ]x‖2
)1/2( n∑

j=2

‖E(λj−1,λj ]y‖2
)1/2

=
(
‖E(λ1,λn]x‖2

)1/2(‖E(λ1,λn]y‖2
)1/2

.

Then for m > n, we obtain

‖x‖2 ≥ ‖E(λn,λm]x‖2 =
m−1∑
i=n

‖E(λi,λi+1]x‖2.

Thus for any finite sequence λ1 < λ2 < · · · < λn we have
m∑
j=2

|〈E(λj−1,λj ]x, y〉| ≤ ‖x‖‖y‖.

Using (1.11), the estimate (1.10) follows. �
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We have proved that for all x and y in H, the function λ 7→ 〈E(λ)x, y〉
is with bounded variation and we can then show the existence of
E(λ+ 0) and E(λ− 0). Indeed, the following lemma regards this.

Lemma 1.8. If E(λ) is a family of projectors satisfying (1.1) and
(1.2), then for all λ ∈ R, the operators

(1.12) Eλ+0 = lim
µ→λ, µ>λ

E(µ) and Eλ−0 = lim
µ→λ, µ<λ

E(µ)

are well defined when considering the limit for the strong convergence
topology.

Proof. We prove the existence of the left limit. Using (1.1), we deduce
that for any ε > 0, there exists λ0 < λ such that, ∀λ′,∀λ′′ ∈ [λ0, λ)
with λ′ < λ′′

‖E(λ′,λ′′]x‖2 ≤ ε.

It is not difficult to prove that Eλ− 1
n
x is a Cauchy sequence converg-

ing to a limit and that limit does not depend on the sequence going to
λ.

A similar argument shows the existence of the limit from the right.
�

1.2. Spectral Integrals. It is then classical (Stieltjes integrals) that
one can define for any continuous complex valued function λ 7→ f(λ)
the integrals ∫ b

a

f(λ) d〈E(λ)x, y〉

as a limit of Riemann sums.

Indeed, let H be a Hilbert space. Consider a function F : [a, b]→ C,
E(λ) a spectral family, and the partition

a ≤ λ0 ≤ λ1 ≤ · · · ≤ λn = b.

Let ∆j = (λj−1, λj], then

E(∆j) := E(λj − 0)− E(λj−1 + 0)

= E(λj)− E(λj−1).

We define the Riemann sums

S(F, π, {ξj})ϕ =
n∑
j=1

F (ξj) (E(λj−1,λj ])ϕ

where ξj ∈ ∆j and π is a partition of [a, b].
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Definition 1.9. We say that F is integrable with respect to E(λ)ϕ if
and only if

lim
‖π‖→0

S(F, π, {ξj})ϕ

exists independently of the choice of the points of the partition ξj. In
this case

lim
‖π‖→0

S(F, π, {ξj})ϕ :=

∫ b

a

F (λ) dE(λ)ϕ.

If the limit exist for all ϕ we will have a bounded linear operator
given by (∫ b

a

F (λ) dE(λ)
)
ϕ =

∫ b

a

F (λ)
(
dE(λ)ϕ).

Remark 1.10. We notice that

‖S(F, π, {ξj})ϕ‖2 =
(
S(·, ·, ·)ϕ

∣∣S(·, ·, ·)ϕ
)

=
( n∑
j=1

F (ξj)E(∆j)ϕ
∣∣ n∑
k=1

F (ξk)E(∆k)ϕ
)

=
n∑
j=1

n∑
k=1

F (ξj)F (ξk)
(
E(∆j)ϕ

∣∣E(∆k)ϕ
)

=
n∑
j=1

|F (ξj)|2‖E(∆j)ϕ‖2

=
n∑
j=1

|F (ξj)|2
(
E(∆j)ϕ

∣∣ϕ).
Thus ∫ b

a

F (λ)dE(λ)ϕ

exists if and only if∫ b

a

|F (λ)|2 d‖E(λ)ϕ‖2︸ ︷︷ ︸ exists.

‖
∫ b

a

F (λ)dE(λ)ϕ‖2

Remark 1.11. Let

(1.13) F (y) =

∫ ∞
−∞

f(λ) d
(
Eλy|x

)
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be a continuous linear form.
If

y =

∫ b

a

f(λ) dEλx,

then
y = E(a,b]y.

Indeed, it follows by using the Riemann sums and observing that

E(a,b]E(λj−1,λj ] = E(λj−1,λj ]

and thus

E(a,b]

( n∑
j=1

f(ξj) (E(λj−1,λj ])x
)

=
n∑
j=1

f(ξj) (E(λj−1,λj ])x.

Proposition 1.12. Let f be a continuous function on R with complex
values and let x ∈ H. Then it is possible to define for α < β, the
integral ∫ β

α

f(λ) dEλx

as the strong limit in H of the Riemann sum:

(1.14)
∑
j

f(λ′j) (Eλj+1
− Eλj)x,

where α = λ1 < λ2 < · · · < λn = β, and λ′j ∈ (λj, λj+1], when
max
j
|λj+1 − λj| → 0.

Proof. The proof uses the uniform continuity of f . �

Definition 1.13. For any given x ∈ H and any continuous function
f on R, the integral ∫ ∞

−∞
f(λ) dEλx

is defined as the strong limit in H, if it exists of
∫ β
α
f(λ) dE(λ)x when

α→ −∞ and β →∞.

Remark 1.14. The theory works more generally for any Borelian func-
tion see [3]. This is important, because we are in particular interested
in the case when f(λ) = χ(−∞,λ].

One possibility for the reader who wants to understand how this can
be made is to look at [5] which gives the following theorem:
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Theorem 1.15 ([5], Theorem 8.14, p. 173).

(1) If µ is a complex Borel measure on R and if

(1.15) f(x) = µ((−∞, x]), ∀x ∈ R,

then f is a normalized function with bounded variation(NBV),
i.e. a function with bounded variation, which is continuous from
the right and such that lim

x→−∞
f(x) = 0.

(2) Conversely, to every f ∈ NBV , there corresponds a unique
complex Borel measure µ such that (1.15) is satisfied.

Theorem 1.16. For x given in H and if f is a complex valued function
on R, the following conditions are equivalent

(i)

(1.16)

∫ ∞
−∞

f(λ) dEλ x exists;

(ii)

(1.17)

∫ ∞
−∞
|f(λ)|2 d‖Eλ‖2 <∞;

(iii)

(1.18) y 7→
∫ ∞
−∞

f(λ) d(〈Eλy, x〉H)

is a continuous linear form.

Sketch of the Proof.

(i) =⇒ (iii) It follows by using repeatedly the Banach-Steinhaus The-
orem and the definition of the integral.

(iii) =⇒ (ii) Let F be a linear form defined in (1.18). Introducing

y =

∫ β

α

f(λ) dEλx,

we notice that

y = E(α,β]y

by using the Riemann integrals.
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It is not difficult to show that

F (y) =

∫ ∞
−∞

f(λ) d〈Eλx, y〉

=

∫ ∞
−∞

f(λ) d〈Eλx,E(α,β]y〉

=

∫ ∞
−∞

f(λ) d〈E(α,β]Eλx, y〉

=

∫ β

α

f(λ) d〈Eλx, y〉

= ‖y‖2.

By (1.16) it follows that

‖y‖2 ≤ ‖F‖‖y‖.
Thus

‖y‖ ≤ ‖F‖.
Observe that the right hand side is independent of α and β.

On the other hand, using once more the Riemann sums, we obtain

‖y‖2 =

∫ β

α

|f(λ)|2 d‖Eλx‖2.

Therefore ∫ β

α

|f(λ)|2 d‖Eλx‖2 ≤ ‖F‖2.

Thus, making α→ −∞ and β →∞ yield (1.17).

(ii) =⇒ (i) Notice that for α′ < α < β < β′, we

‖
∫ β′

α′
f(λ) dEλx−

∫ β

α

f(λ) dEλx‖2

=

∫ α

α′
|f(λ)|2 d‖Eλx‖2 +

∫ β′

β

|f(λ)|2 d‖Eλx‖2.

This implies (1.15). �

Theorem 1.17. Let λ 7→ f(λ) be a real-valued continuous function.
Let

Df = {x ∈ H :

∫ ∞
−∞
|f(λ)|2d〈E(λ)x, x〉 <∞}.

Then Df is dense in H and we define Tf whose domain is defined by

D(Tf ) = Df ,
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and

〈Tfx, y〉 =

∫ ∞
−∞

f(λ) d〈E(λ)x, y〉

for all x in D(Tf ) and y ∈ H.
The operator Tf is self-adjoint. In addition, TfEλ is an extension of

EλTf .

Proof of Theorem. Property (1.2) gives us, that for any y ∈ H, there
exists a sequence (αn, βn) such that E(αn,βn]y → y as n→∞.

Observe that E(α,β]y ∈ Df , for any α, β, this yields the density of Df

in H.
Since f is real-valued and Eλ is symmetric, it follows that Tf is

symmetric. That Tf is self-adjoint is deduced by using Theorem 1.16.

We notice that, for f0 = 1, we get Tf0 = I and for f1(λ) = λ, we
have a self-adjoint Tf1 = T .

In this case, it is said that

T =

∫ ∞
−∞

λ dE(λ)

is a spectral decomposition of T and we observe that

‖Tx‖2 =

∫ ∞
−∞

λ2 d〈E(λ)x, x〉 =

∫ ∞
−∞

λ2 d‖E(λ)x‖2

for x ∈ D(T ). More generally,

‖Tx‖2 =

∫ ∞
−∞

λ2 d((E(λ)x, x)) =

∫ ∞
−∞

λ2 d(‖E(λ)x‖2)

for x ∈ D(Tf ). �

We have seen so far how one can associate to a spectral family of
projectors a self-adjoint operator.

The Spectral Decomposition Theorem makes explicit that the pre-
ceding situation is actually the general one.

Theorem 1.18. Any self-adjoint operator T in a Hilbert space H ad-
mits a spectral decomposition such that

(1.19) 〈Tx, y〉 =

∫
R
λ〈Eλx, y〉H,

and

(1.20) Tx =

∫
R
λ d(Eλx).
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Sketch of the Proof.

Step 1. It is rather natural to imagine that it is essentially enough to
treat the case when T is a bounded selfadjoint operator (or at least a
normal bounded operator, that is satisfying T ∗T = TT ∗. If A is indeed
a general semibounded self-adjoint operator, one can come back to the
bounded case by considering (A+λ0)−1, with λ0 real, which is bounded
and self-adjoint. In the general case, one can consider (A+ i)−1.

Step 2. We analize first the spectrum of P (T ) where P is a polynomial.

Lemma 1.19. If P is a polynomial, then

σ(P (T )) = {P (λ) : λ ∈ σ(T )}.

Proof of Lemma 1.19. From the identity P (x)−P (λ) = (x− λ)Qλ(x)
we obtain for bounded operators the identity

P (T )− P (λ) = (T − λ)Qλ(T ).

This allows us to construct the inverse of (T − λ) if one knows the
inverse of P (T )− P (λ).

Reciprocally, notice that if z ∈ C and if λj(z) are the roots of λ 7→
(P (λ)− z), then

(P (T )− z) = c
∏
j

(T − λj(z)).

This allows to construct the inverse of (P (T )−z) if one has the inverse
of (T − λj(z)) for all j. �

We will use the next exercises to prove the next lemma.

Exercise 1.20. Let A be a bounded linear operator in a Hilbert space
H. Show that

‖A∗A‖ = ‖A‖2.

Exercise 1.21. Let A ∈ B(H) be a self-adjoint operator. Show that

the spectrum of A is contained in [m,M ] with m = inf
〈Au, u〉
‖u‖2

and

M = sup
〈Au, u〉
‖u‖2

. Moreover m and M belong to the spectrum of T .

Lemma 1.22. Let T be a bounded self-adjoint operator. Then we have

(1.21) ‖P (T )‖ = sup
λ∈σ(T )

|P (λ)|.
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Proof. We first notice that

‖P (T )‖2 = ‖P (T )∗P (T )‖.
This is a consequence of the general property for bounded linear

operators
‖A∗A‖2 = ‖A‖2.

(See Exercise 1.20).

From Exercise 1.21 and Lemma 1.19 we deduce that

‖P (T )‖2 = ‖(PP )(T )‖
= sup

µ∈σ((PP )(T ))

|µ|

= sup
λ∈σ(T )

|(PP )(λ)|

= sup
λ∈σ(T )

|P (λ)|2.

�

Step 3. We have defined a map Φ from the set of polynomials into
B(H) by

(1.22) P 7→ Φ(P ) = P (T )

which is continuous since

(1.23) ‖Φ(P )‖B(H) = sup
λ∈σ(T )

|P (λ)|.

The set σ(T ) is a compact in R and using the Stone-Weierstrass
theorem (which guarantees the density of the polynomials in C(σ(T ))),
the map Φ can be uniquely extended to C(σ(T )). We will denote this
extension again using Φ.

Theorem 1.23 (Properties of Φ). Let T be a bounded self-adjoint op-
erator on H. Then there exists a unique map Φ,

Φ : C(σ(T ))→ B(H)

satisfying the following properties:

(i)

Φ(f + g) = Φ(f) + Φ(g);

Φ(λf) = λΦ(f);

Φ(1) = Id;

Φ(f̄) = Φ(f)∗;

Φ(fg) = Φ(f) ◦ Φ(g).
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(ii)

‖Φ(f)‖B(H) = sup
λ∈σ(T )

|f(λ)|.

(iii) If f is defined by f(λ) = λ, then Φ(f) = T .
(iv)

σ(Φ(f)) = {f(λ) : λ ∈ σ(T )}.
(v) If ϕ satisfies Tϕ = λϕ, then Φ(f)ϕ = f(λ)ϕ.
(vi) If f ≥ 0, then Φ(f) ≥ 0.

Proof. The proof of the properties above follows by showing first the
properties for the polynomials P and then extending the properties
by continuity to continuous functions. To establish the last item we
observe that

Φ(f) = Φ(
√
f) · Φ(

√
f) = Φ(

√
f)∗ · Φ(

√
f).

�

Step 4. Now we introduce the measures.
Let ψ ∈ H. Define the functional

(1.24) f 7→ 〈ψ, f(T )ψ〉H = 〈ψ,Φ(f)ψ〉H.

We observe that this is a positive linear functional on C(σ(T )). From
the Riesz Theorem (Theorem 1.32 below), there exists a unique mea-
sure µψ on σ(T ), such that

(1.25) 〈ψ,Φ(f)ψ〉H =

∫
σ(T )

f(λ) dµψ.

This measure is called the spectral measure associated with the
vector ψ ∈ H. This measure is a Borel measure. This means that we
can extend the map Φ and (1.25) to Borelian functions.

Using the standard Hilbert calculus (that is the link between sesquilin-
ear form and the quadratic forms) we can also construct for any x and
y in H a complex measure dµx,y such thta

(1.26) 〈x,Φ(f)y〉H =

∫
σ(T )

f(λ) dµx,y(λ).

Using the Riesz representation Theorem (Theorem 1.33 below), this
gives us, when f is bounded, an operator f(T ). If f = χ(−∞,µ], we
recover the operator Eµ = f(T ) which permits to construct indeed the
spectral family announced in Theorem 1.18.

�
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Remarks 1.24. For any measurable (real or complex valued) func-
tion f on R, the unique operator f(T ) satisfying (1.25) is defined. Its
domain is the set {h :

∫∞
−∞ |f |

2 dµh <∞}, dense in H.
For any h ∈ D(f(T ))

(1.27) ‖f(T )h‖2 =

∫ ∞
−∞
|f(λ)|2 dµh(λ).

The equation (1.27) can be easily verified for the case when f is a
nonnegative measurable function.

We have

‖f(T )h‖2 = lim
n→∞
‖f ∧ n · χ[−n,n](T )h‖2

= lim
n→∞

(
[
f ∧ n · χ[−n,n](T )

]2
h, h)

= lim
n→∞

∫ ∞
−∞

[
f ∧ n · χ[−n,n](λ)

]2
dµh(λ)

=

∫ ∞
−∞

f 2 dµh(λ)

where f ∧ n · χ[−n,n] = inf{f, n · χ[−n,n]}.
In case f is any measurable function, f = f1 − f2 + i(g3 − g4) and
|f |2 = f 2

1 + f 2
2 + g2

3 + g2
4. In this situation equation (1.27) can be seen

to hold.

1.3. Another version of the Spectral Theorem. In this section
our goal is to present a multiplication form of the Spectral Theorem.
Our plan is to sketch the main points of the proof of the theorem. We
will ask the reader to complete some details by proving some proposed
exercises.

The Spectral Theorem reads as follows.

Theorem 1.25 (Multiplication Operator Form of the Spectral Theo-
rem). Let T be a self-adjoint operator in a Hilbert space H. Then there
exist a measure space (X,A, µ), a unitary operator U : H→ L2(X,µ),
and a measurable function F on X which is real a.e. such that

(i) h ∈ D(T ) if and only if F (·)Uh(·) is in L2(X,µ)
and

(ii) if f ∈ U(D(T )), then (UTU−1f)(·) = F (·)f(·).

To prove this theorem we need of some preparation.
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Definition 1.26. Let T : H→ H be a continuous linear operator with
adjoint T ∗.

T is called normal if and only if T ∗T = TT ∗.

The proof of Theorem 1.25 uses the following Spectral Theorem for
bounded normal linear operators. The proof can be found for instance
in the appendix of [2].

Theorem 1.27. Let T = T1 + iT2 be a bounded normal operator on H.
Then there exist a family of finite measures (µj)j∈I on σ(T1) × σ(T2)
and a unitary operator

U : H→ ⊕
j∈I
L2(σ(T1)× σ(T2), µj)

such that

(UTU−1f)j(x, y) = (x+ iy)fj(x, y) a.e.

where f = (fj)j∈I is in ⊕
j∈I
L2(σ(T ), µj) and σ(·) stands for the spectrum

of the operator ·.

Proof. See Theorem A.6 in [2]. �

A readily consequence of this theorem we have.

Corollary 1.28. Let T be a bounded normal operator on a Hilbert
space H.Then there exists a measure space (X,A, µ), a bounded com-
plex function G on X, and a unitary map U : H→ L2(X,µ) so that

(UTU−1f)(λ) = G(λ)f(λ) a.e.

We will use the following facts in the proof of Theorem 1.25.

Exercise 1.29. Show that if T is a closed linear operator in H densely
defined and λ ∈ ρ(T ), then (T − λI)−1 is a bounded linear operator on
H.

Exercise 1.30. Let T be a self-adjoint operator in H. Prove that ρ(T )
contains all complex number with nonzero imaginary part. Moreover,
if Imλ 6= 0, then

(1.28) ‖(T − λI)−1‖ ≤ 1

|Imλ|

and

(1.29) Im〈(T − λI)h, h〉 = Im(−λ)‖h‖2 for all h ∈ D(T ).
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Proof of Theorem 1.25. We will need the results in Corollary 1.28 for
bounded normal operators applying to the operator (T + i)−1.

We first show that (T +i)−1 is a bounded normal operator. From the
Exercises 1.29 and 1.30 we conclude that (T ± i)−1 exists as bounded
linear operator in H. In particular, R(T ± i) = H and T ± i are one-
to-one operators. Since T is self-adjoint, for any φ and ψ in D(T ), we
have

((T − i)φ, (T + i)−1(T + i)ψ) = ((T − i)−1(T − i)φ, (T + i)ψ).

This implies that ((T+i)−1)∗ = (T−i)−1. Since (T+i)−1 and (T−i)−1

commute by the resolvent formula, we have

(T + i)−1((T + i)−1)∗ = (T + i)−1(T − i)−1 = ((T + i)−1)∗(T + i)−1,

which tells us that (T + i)−1 is a normal operator.

Using Corollary 1.28, there is measure space (X,A, µ), a unitary
operator U : H → L2(X,µ), and a bounded, measurable complex
function G on X such that

(1.30) (U(T + i)−1U−1f)(x) = G(x)f(x) a.e.

for all f ∈ L2(X,µ).
Since Ker(T+i)−1 = {0}, G(x) 6= 0 a.e. Therefore if we define F (x)

as G(x)−1− i for each x ∈ X, |F (x)| is finite a.e. Now if f ∈ U(D(T )),
then there exists a function g ∈ L2(X,µ) such that f(·) = G(·)g(·) in
L2. This is true because of

(1.31) U(D(T )) ⊂ U(T + i)−1(H) ⊂ U(T + i)−1U−1(L2(X,µ)).

Noticing that U(T + i)−1U−1 is an injection, for any g in the range
of U(T + i)−1U−1 we have from (1.30) that

[U(T + i)−1U−1]−1g(x) =
1

G(x)
· g(x) ∈ L2(X,µ).

In particular for f in the set U(D(T )),

[U(T + i)−1U−1]−1f(x) =
1

G(x)
· f(x) ∈ L2(X,µ).

or

U(T + i)U−1f(x) =
1

G(x)
· f(x) ∈ L2(X,µ).

or

UTU−1f(x) =
1

G(x)
· f(x)− if(x) = F (x)f(x) ∈ L2(X,µ).

This proves (ii) and the necessity of (i) provided F is real-valued,
which we show below. For the converse of (i), if F (x)Uh(x) is in



18

L2(X,µ), then there exists k ∈ H so that Uk = [F (x) + i]Uh(x).
Thus

G(x)Uk(x) = G(x) [F (x) + i]Uh(x) = Uh(x),

so h = (T + i)−1k, whereby h ∈ D(T ).

To finish the proof it must be established that F is real-valued a.e.
Observe that the operator in L2(X,µ) defined by multiplication by F
is self-adjoint since by (ii) it is unitarily equivalent to T . Hence for
all χM , M a measurable subset of X, (χM , FχM) is real. However, if
ImF > 0 on a set of positive measure, then there exists a bounded
set B in the plane so that M = f−1(B) has nonzero measure. Clearly
FχM is in L2(X,µ) since B is bounded and Im (χM , FχM) > 0. This
contradiction shows that ImF = 0 a.e. �

Example 1.31 (Examples of functions of a self-adjoint operator).
The following are common examples in spectral theory.

(1) f is the characteristic function of (−∞, λ], χ(−∞,λ]; Φ(f) =
f(T ) is then Φ(f) = E(λ).

(2) f is the characteristic function of (−∞, λ), χ(−∞,λ); f(T ) is
then Φ(f) = E(λ− 0).

(3) f is a compactly supported continuous function. f(T ) will be
an operator whose spectrum is localized in the support of f .

(4) ft(λ) = exp(itλ) with t real. ft(T ) is then a solution of the
functional equation{

(∂t − iT )(f(t, T )) = 0,

f(0, T ) = I.

We notice that , for all real t, ft(T ) = exp(itT ) is a bounded
unitary operator.

(5) gt(λ) = exp(−tλ) with t real positive. gt(T ) is the a solution of
the functional equation{

(∂t + T )(g(t, T )) = 0, for t ≥ 0,

g(0, T ) = I.



19

1.4. Application of the Spectral Theorem in solving the Schrödinger
equation. The time-dependent Schrödinger equation arises in quan-
tum mechanics. It is given by

i
du

dt
= Au(t),

where u(t) is an element of a Hilbert space H, A is a self-adjoint op-
erator in H, and t is a time variable with u(t) ∈ D(A). An initial
condition is u(0) = u0 ∈ D(A). The derivative of u is given as

lim
∆→0

u(t+ ∆)− u(t)

∆

in the strong topology of H.
The Spectral Theorem allows us to solve the Schrödinger equation.

Let e−itA be the bounded operator on H given by

e−itA =

∫ ∞
−∞

e−itλ dP (λ),

where A =

∫
λ dP . We would like to prove that

(1.32)
d

dt
(e−itAh) = i A(e−itAh)

for every h ∈ D(A).
To show this, we compute the following limit:

lim
∆t→0

∥∥∥(e−i(t+∆t)A − e−itA

∆t
+ ie−itAA

)
h
∥∥∥2

= lim
∆t→0

∫ ∞
−∞

∣∣∣e−i(t+∆t)λ − e−itλ

∆t
+ ie−itλλ

∣∣∣2d(E(λ)h, h)

= lim
∆t→0

∫ ∞
−∞

∣∣∣e−i∆tλ − 1

∆t
+ iλ

∣∣∣2d(E(λ)h, h).

Using that |eix − 1| ≤ |x|, the integrand above is bounded by 4λ2,
which is integrable since h ∈ D(A). It follows then by using the
Lebesgue Dominated Convergence theorem that the limit is zero. Hence

(1.33)
d

dt
(e−itAh) = −i (e−itAAh)

for every h ∈ D(A).
The identity (1.32) is obtained from (1.33) since for h ∈ D(A)

(1.34) e−itAAh = Ae−itAh.
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This last identity follows from the fact that if h ∈ D(A), then e−itAh
is in D(A) since by the equation (1.27) we have

‖E(M)e−itAh‖2 =

∫
χM |e−itλ|2 dEh(λ) =

∫
χMdEh(λ) = ‖E(M)h‖2.

The solution u(t) = e−itAu0 of the Schrödinger equation is unique.
To show this, suppose that v(t) in D(A) is a solution. Then for any
φ ∈ H

d

ds
(e−i(t−s)Av(s), φ) = lim

∆s→0

(e−i(t−(s+∆s))A v(s+ ∆s), φ)− (e−i(t−s)Av(s), φ)

∆s

= lim
∆s→0

(e−i(t−(s+∆t))A − e−i(t−s)A

∆s
v(s+ ∆s), φ

)
+
(

lim
∆s→0

e−i(t−s)A
v(s+ ∆s)− v(s)

∆s
, φ
)

=
(
− d

dt
e−i(t−s)Av(s), φ

)
+
(
e−i(t−s)A

dv

ds
, φ
)

= (ie−i(t−s)A v(s), φ) + (e−i(t−s)A[−iAv(s)], φ) = 0.

Therefore for all φ ∈ H

0 =

∫ t

0

d

ds

(
e−i(t−s)A v(s), φ

)
ds = (e−i0Av(t), φ)− (e−itAv(0), φ),

and since v(0) = u0 and e−i0A = I we have

v(t) = e−itAu0.

This yields the uniqueness.

1.5. Riesz representation Theorem. We start by introducing some
notations and definitions.

Given a locally compact Hausdorff space X we denote C0(X) as the
set of continuous functions on X which vanish at infinity.

We say that ν is a regular measure if every Borel set in X is both
outer regular and inner regular. We denote by |ν| the total variation
of ν or the total variation measure.

A complex Borel measure µ on X is called regular if |µ| is regular.
If µ is a complex Borel measure on X, it is not difficult to see that

the mapping

f →
∫
X

f dµ
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is a bounded linear functional on C0(X), whose norm is not longer
than |µ|(X). The Riesz theorem guarantees that all bounded linear
functionals on C0(X) are obtained in this way.

Theorem 1.32. If X is a locally compact Hausdorff space, then every
bounded linear functional Φ on C0(X) is represented by a unique regular
complex Borel measure µ, in the sense that

Φf =

∫
X

f dµ for every f ∈ C0(X).

Moreover, the norm of Φ is the total variation of µ:

‖Φ‖ = |µ|(X).

Proof. See Theorem 6.19 in [5]. �

In Hilbert spaces we have the well known Riesz theorem.

Theorem 1.33. Let u 7→ F (u) a linear continuous form on H. Then
there exists a unique w ∈ H such that

(1.35) F (u) = 〈u,w〉H, ∀u ∈ H.
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